hgq.layers package
Subpackages
- hgq.layers.core package
- Submodules
- hgq.layers.core.base module
MultipleQuantizers
QLayerBase
QLayerBase.beta
QLayerBase.build()
QLayerBase.ebops
QLayerBase.enable_ebops
QLayerBase.enable_iq
QLayerBase.enable_lora()
QLayerBase.enable_oq
QLayerBase.from_config()
QLayerBase.get_config()
QLayerBase.load_own_variables()
QLayerBase.oq
QLayerBase.save_own_variables()
QLayerBase.try_build_output_quantizer()
QLayerBaseMultiInputs
QLayerBaseSingleInput
QLayerMeta
check_save_load_own_variables()
get_method_source()
- hgq.layers.core.dense module
- hgq.layers.core.einsum_dense module
- Module contents
QBatchNormDense
QDense
QEinsumDense
QLayerBase
QLayerBase.beta
QLayerBase.build()
QLayerBase.ebops
QLayerBase.enable_ebops
QLayerBase.enable_iq
QLayerBase.enable_lora()
QLayerBase.enable_oq
QLayerBase.from_config()
QLayerBase.get_config()
QLayerBase.load_own_variables()
QLayerBase.oq
QLayerBase.save_own_variables()
QLayerBase.try_build_output_quantizer()
QLayerBaseMultiInputs
QLayerBaseSingleInput
- hgq.layers.ops package
Submodules
hgq.layers.activation module
- class hgq.layers.activation.QUnaryFunctionLUT(*args, **kwargs)
Bases:
Activation
,QLayerBaseSingleInput
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
hgq.layers.batch_normalization module
- class hgq.layers.batch_normalization.QBatchNormalization(*args, **kwargs)
Bases:
QLayerBaseSingleInput
,BatchNormalization
- property beta
- property bq
- build(input_shape)
- call(inputs, training=None, mask=None)
- property gamma
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- property kq
- property qscaler_and_qoffset
hgq.layers.conv module
- class hgq.layers.conv.QBaseConv(*args, **kwargs)
Bases:
QLayerBaseSingleInput
,BaseConv
- property bq
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- property kq
- property qbias
- property qkernel
- class hgq.layers.conv.QConv1D(*args, **kwargs)
Bases:
QBaseConv
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
hgq.layers.einsum_dense_batchnorm module
- class hgq.layers.einsum_dense_batchnorm.QEinsumDenseBatchnorm(*args, **kwargs)
Bases:
QEinsumDense
- property bq
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- get_fused_qkernel_and_qbias(training, mean, var)
- property kq
- property qbias
- property qkernel
hgq.layers.multi_head_attention module
- class hgq.layers.multi_head_attention.QMultiHeadAttention(*args, **kwargs)
Bases:
MultiHeadAttention
,QLayerBase
- build(query_shape, value_shape, key_shape=None)
Builds layers and variables.
- Parameters:
query_shape (tuple) – Shape of the query tensor.
value_shape (tuple) – Shape of the value tensor.
key_shape (tuple, optional) – Shape of the key tensor.
- call(query, value, key=None, query_mask=None, value_mask=None, key_mask=None, attention_mask=None, return_attention_scores=False, training=None, use_causal_mask=False)
- compute_output_shape(query_shape, value_shape, key_shape=None)
- property ebops
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
hgq.layers.softmax module
- class hgq.layers.softmax.QSoftmax(*args, **kwargs)
Bases:
QLayerBaseSingleInput
- build(input_shape)
- call(inputs, training=None, mask=None)
- compute_output_shape(input_shape)
- property ebops
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
Module contents
- class hgq.layers.QAdd(*args, **kwargs)
Bases:
QMerge
,Add
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QAveragePow2(*args, **kwargs)
Bases:
QAdd
,Average
- build(input_shape)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QBatchNormDense(*args, **kwargs)
Bases:
QDense
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- get_fused_qkernel_and_qbias(mean, var)
- property qbias
- property qkernel
- class hgq.layers.QBatchNormalization(*args, **kwargs)
Bases:
QLayerBaseSingleInput
,BatchNormalization
- property beta
- property bq
- build(input_shape)
- call(inputs, training=None, mask=None)
- property gamma
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- property kq
- property qscaler_and_qoffset
- class hgq.layers.QConv1D(*args, **kwargs)
Bases:
QBaseConv
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QConv2D(*args, **kwargs)
Bases:
QBaseConv
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QConv3D(*args, **kwargs)
Bases:
QBaseConv
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QDot(*args, **kwargs)
Bases:
QMerge
,Dot
- build(input_shape)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QEinsum(*args, **kwargs)
Bases:
QLayerBaseMultiInputs
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QEinsumDense(*args, **kwargs)
Bases:
QLayerBaseSingleInput
,EinsumDense
- property bq
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- property kq
- property qbias
- property qkernel
- class hgq.layers.QEinsumDenseBatchnorm(*args, **kwargs)
Bases:
QEinsumDense
- property bq
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- get_fused_qkernel_and_qbias(training, mean, var)
- property kq
- property qbias
- property qkernel
- class hgq.layers.QMaximum(*args, **kwargs)
Bases:
QMerge
,Maximum
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QMeanPow2(*args, **kwargs)
Bases:
QSum
- build(input_shape)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QMinimum(*args, **kwargs)
Bases:
QMerge
,Minimum
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QMultiHeadAttention(*args, **kwargs)
Bases:
MultiHeadAttention
,QLayerBase
- build(query_shape, value_shape, key_shape=None)
Builds layers and variables.
- Parameters:
query_shape (tuple) – Shape of the query tensor.
value_shape (tuple) – Shape of the value tensor.
key_shape (tuple, optional) – Shape of the key tensor.
- call(query, value, key=None, query_mask=None, value_mask=None, key_mask=None, attention_mask=None, return_attention_scores=False, training=None, use_causal_mask=False)
- compute_output_shape(query_shape, value_shape, key_shape=None)
- property ebops
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QMultiply(*args, **kwargs)
Bases:
QMerge
,Multiply
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QSoftmax(*args, **kwargs)
Bases:
QLayerBaseSingleInput
- build(input_shape)
- call(inputs, training=None, mask=None)
- compute_output_shape(input_shape)
- property ebops
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QSubtract(*args, **kwargs)
Bases:
QMerge
,Subtract
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.QSum(*args, **kwargs)
Bases:
QLayerBaseSingleInput
- build(input_shape)
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- property keepdims
- property scale
- class hgq.layers.QUnaryFunctionLUT(*args, **kwargs)
Bases:
Activation
,QLayerBaseSingleInput
- call(inputs, training=None)
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- class hgq.layers.Quantizer(*args, **kwargs)
Bases:
Layer
The generic quantizer layer, wraps internal quantizers to provide a universal interface. Supports float, fixed-point (KBI, KIF) quantization. Can be initialized with a QuantizerConfig object or with the quantizer type and its parameters.
- property bits
- bits_(shape)
- build(input_shape)
- call(inputs, training=None)
- epsilon_(shape)
- classmethod from_config(config)
Creates an operation from its config.
This method is the reverse of get_config, capable of instantiating the same operation from the config dictionary.
Note: If you override this method, you might receive a serialized dtype config, which is a dict. You can deserialize it as follows:
```python if “dtype” in config and isinstance(config[“dtype”], dict):
policy = dtype_policies.deserialize(config[“dtype”])
- Parameters:
config – A Python dictionary, typically the output of get_config.
- Returns:
An operation instance.
- get_config()
Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
- get_quantizer_config_kwargs(*args, **kwargs)
- max_(shape)
- min_(shape)
- property q_type